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An analysis of a conductive heat exchanger used for joining links of coolant loop piping utilized in thermal 

regime systems of spacecraft is carried out. An indirect variant of the finite-element method specially 

modified for this case was used for the numerical solution. Temperature fields m the heat exchanger and 

dependences of the heat transfer coefficient on main parameters are obtained. 

1. Presently, loop heat pipes (LHP) that provide heat transfer from operating spacecraft-borne equipment 

to a source of cold have found wide applications in systems of the thermal regime support of spacecraft. Heat 

exchangers of various types are used in this case. For example, an investigation of a radiation heat exchanger has 
been carried out in [ 1 ]. 

In order to ensure leak-proof LHP lines (when they must be joined), conductive heat exchangers consisting 

of two detachable boards are used. In one of the boards, the condenser of the first HP is situated, and the evaporator 

of the second HP is situated in the other one. The condenser and evaporator are most frequently manufactured in 

the form of a ring slot. The geometry of the heat exchanger makes it possible to consider the problem in a plane 

formulation. In view of that fact, and owing to the symmetry of the problem, the region of calculations has a 

rectangular shape with two semicircular notches (Fig. 1). External surfaces of the heat exchanger are heat- 

insulated, and therefore the value of the heat flux on them is considered to equal zero. The total heat flux is 

assumed to be known. Then, by setting up the temperature on the condenser (left notch) and the heat flux density 

on the evaporator, one can determine the heat transfer coefficient of the whole construction. The coefficient of 

thermal conductivity on the contact surface, whose value depends on a number of factors (pressure of board 

constriction, the degree of the finishing treatment of the surface, characteristics of the medium in the gap, etc.), 

is considered to be known. A similar method of calculation is presented in [2 ]. 

Thus, the mathematical formulation of the problem is as follows. It is necessary to find a solution of a 
steady-state heat conduction equation, i.e., the Laplace equation 

O2T 

OxiOx i 
- - - o ,  i = 1 , 2 ,  (1) 

under the following boundary conditions: 

q = 0 ,  x ~ F 1 ,  F 3, 
(2) 

T = T  1, x ~ l r 2 ,  (3) 

q =  qo, x E F  4, (4) 
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Fig. 1. Region of calculations and temperature distribution over the region for 

R = 0.24 and U=  2. 

q~ = q2 = u (r~ - 7"2), x ~ / ' 5 ,  (5) 

r = r  I u r 2 u F 3 u r  4. 

Equation (1) with boundary conditions (2)-(4) and condition on the contact surface (5) are written in 

dimensionless variables. The board height and the temperature on the condenser wall are chosen as length and 

temperature scales. 
2. An indirect variant of the finite-element method [3 ] was used to solve the problem. In doing this, we 

used a singular solution of the Laplace equation for the case of a single concentrated source: 

T* (x, ~) = - In r / ( 2 ~ ) ,  (6) 

q* (x, ~) = Yini/(2~r2).  (7) 

We consider fictitious sources of unknown power to be distributed over the boundary of the region, including the 

contact surface. The left and right subregions will be treated separately, as independent zones interconnected by 

conditions on the contact (5), which consist in continuity of the heat flux and setting a temperature jump in 

accordance with the value of the thermal conductivity U. In view of the linear character of the problem, values of 

the temperature and flux at any point in the first and second zones can be found by convoluting the fundamental 

solutions (6), (7) with the corresponding distributions of the sources ~o1(~) and ~o2(~): 

Z i(X) = f ~o i (~)  T* (x, ~) a s  (~) + Ci ,  x E ~2i, ~ ~ S i ,  
si 

(8) 

qi (x) = f ~o i (~) q* (x, ~) dS (~) , X E Qi , ~ E S i. 
S i 

(9) 

where i = 1, 2 is the zone number. Constants C i appear due to the logarithmic behavior of the fundamental solution 

for the temperature. 
By passing to the limit x --, xo(x o ~ Si) in (8), (9), we obtain a system of boundary integral equations 

equivalent to the boundary-value problem (1)-(5), and, by solving the system, we can find the distribution of the 

unknown intensities of the sources Ti(~): 

r~ (xo) = f ~'i (~) r* (xo, ~) a s  (~) + c~ , xo ~ (s t  n r s )  , 
si 

(io) 
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Fig. 2. Temperature distribution over the upper boundary of the region at 

different  numbers of boundary elements compared with the analytical 

solution: a, 1) 16, 2) 32, and 3) 128 elements, and 4) analytical solution; b, 
I) 46, 2) 54, 3) 140, and 4) 280 elements. 

1 
qi (xo) = - ~ ~' (xo) + f ~ (0 q* (xo, ~) a s  (~) , xo ~ (s~ n 1"5), 

s i 
(11) 

f ~1 (~) q* (X0, ~) a s  ( ~ )  - f So 2 (~) q* (Xo, ~) as  (~) - 

S l  s 2 

1 
- ~ [~ol (x  o)  - ~o2 (xo)  ] = o ,  x o E 1"~, (12 )  

1 q.  I f  _ 2 ~~ (x0)  + f ~'~ (Xo) (x o, ~) a s  (~) - u ~ (go) r* (x o, ~) a s  (~) + c~ 
s1 

- f ~'2 (Xo) r* (xo, ~) a s  (~)  - c z ]  = 0 ,  x 0 E r 5 , 
$2 ] 

(13) 

f qi (~) dS = 0 .  (14) 
si 

The integral f ~oi(~)q*(xo, ~)dS should be considered in the sense of the Cauchy principal value. 
si 

Equations (10) are used for portions of the outer boundary of the region F N 1" 5 where the temperature 
is set up, and Eqs. (11) are used for portions of the boundary where the heat flux is set up. Equations (14) guarantee 

the uniqueness of the solution obtained and in fact serve for evaluation of constants Ci. 

To obtain an approximate solution of system (10)-(14), the region of calculations is divided into linear 
portions within the limits of which values of the functions ~0i(~) are considered to be constant (constant boundary 

elements). The internal boundary is, in fact, taken into account twice: as a portion of the boundary of the first and 

second zones being considered, as has been noted, separately. The doubled number of unknown intensities of 
sources on the inner boundary ~o (~) corresponds to setting up two boundary conditions on it: continuity of flux (12) 

and a condition of the third kind (13). Upon discretization of relationships (10)-(14) in accordance with the 
specified scheme, we obtain a system of l inear equations with the dimensions (NI + N2 + 2Na + 2) • 

(N1 + N2 + 2N3 + 2) for (Nl + N2 + 2N3 + 2) unknowns T(~)- Coefficients of the system, which are given by 
integrals of functions (6), (7) over elements, can be calculated analytically in this case. 

To solve the system, a modified Gauss method with the choice of the leading element was used to solve 
the system of equations. Values of the temperature and flux in internal and boundary points can be found from 
discrete analogs of Eqs. (8), (9) and (10), (1 I), respectively. 
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Fig. 3. Dependences of heat transfer coefficient of the heat exchanger on U 

and R: a, 1) R -- 0.08, 2) 0.12, 3) 0.16, 4) 0.20, 5) 0.24, 6) 0.28, 7) 0.32, 8) 

0.36, 9) 0.40, and 10) 0.44; b, 1) U = 0.5, 2) 1, 3) 2, 4) 5, 5) 10, 6) 30, and 
7) 100. 

3. In order to estimate the confidence of the results obtained, the numerical method was subjected to checks 

of various types. In particular, we solved a problem for a region consisting of two linked square subregions with 

thermoinsulated upper and lower boundaries. Temperatures were considered to be known on the left and right 

boundaries, and the temperature jump on the internal boundary was determined by the quantity U. For this, in 

fact one-dimensional problem, one can easily obtain an analytical solution, which was compared with the numerical 

results (Fig. 2a). The temperature distribution over the upper boundary was calculated at various numbers of 

boundary elements of equal length. When the boundaries are divided into 256 elements, the difference from the 

analytical solution is visually indistinguishable, and the value of the temperature jump (in this case U -- 2) differs 
from the exact value of 0.4 only in the fourth digit. Figure 2b illustrates the good convergence of the method with 

an increasing number of boundary elements when solving the above-formulated problem for the region with ring- 

shaped notches. The character of the temperature distribution in the region of calculations is shown in Fig. 1. It 

should be noted that the equation of thermal balance is satisfied identically, since the discrete analogs of Eqs. (14) 

are satisfied exactly. 

The total coefficient of thermal conductivity U1 (the inverse of the thermal resistance) is a main charac- 

teristic of the heat exchanger. The value of Ut, all other factors being the same, is determined by the value of the 

conductivity of the contact and outer radii of ring-shaped notches having the same shape as the condenser and 

evaporator. From the standpoint of design, the radii are usually chosen to be equal. Dependences of the thermal 

conductivity coefficient of the heat exchanger on U and R are presented in Fig. 3. These dependences calculated 

over the maximum possible range of variations of U and R can be used when designing the heat exchanger for 

evaluation of the heat transferred from the condenser to evaporator, which makes it possible to determine the 

functioning mode of the LHP. As is evident from Fig. 3a, beginning with U = 20, an improvement in the contact 

quality virtually does not affect the value of the heat exchanger's conductivity for arbitrary R (the maximum 

variation in U1 does not exceed 3%). At the same time, as follows from Fig. 3b, the value of U1 depends strongly 
on R for U > 1. 

In summary, we should point out that a rather efficient finite element method based on the alternating 

directions scheme [5 ] has been used to solve this problem. A comparison with the boundary element method has 

substantiated that the former outperforms in both the accuracy and performance rate, which is almost an order of 

magnitude higher than in the case of the finite-element method. 

N O T A T I O N  

T, temperature; x i ,  Cartesian coordinates; q, heat flux density; F h portions of boundaries of the region of 

calculations; U, dimensionless conductivity coefficient of the contact surface of boards; ql, q2, T1, and T2, densities 

of heat flux and temperature on the contact surface on the side of the first and second subregions, respectively; r 2 

= ( x i  - ~ i ) ( x i  - ~ i ) ,  distance between points x and ~; Yi = ( x i  - ~i); h i ,  components of the vector of the normal at 
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the point X; 7'i(~), intensity of fictitious sources; •i, subregions with boundaries Si; NI, N2, total number of 
elements of the first and second subregions; N 3, number of elements on the contact boundary; Ul, thermal 

conductivity coefficient of heat exchanger; R, external radius of ring notches. 
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